Data-Clustering-Assisted Digital Predistortion for 5G Millimeter-Wave Beamforming Transmitters With Multiple Dynamic Configurations

نویسندگان

چکیده

Motivated by data science, in this article, a data-clustering-assisted digital predistortion (DPD) is proposed to linearize millimeter-wave (mmWave) beamforming transmitters with multiple dynamic configurations. Based on the analysis, similar transmitter states different configurations can be clustered, resulting significant reduction of linearization states. Model complexity within cluster further reduced utilizing penalty factor method. To validate concept, experiments were carried out 16-channel mmWave configurable beam angle, operating frequency, and input power. Total 216 8, 20, 40 unequal optimal model parameters for each state, without losing much performance. The method extended scenario where large scale occur complex structures future wireless systems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5G Millimeter Wave Cellular System Capacity with Fully Digital Beamforming

Due to heavy reliance of millimeter-wave (mmWave) wireless systems on directional links, Beamforming (BF) with high-dimensional arrays is essential for cellular systems in these frequencies. How to perform the array processing in a power efficient manner is a fundamental challenge. Analog and hybrid BF require fewer analog-to-digital converters (ADCs), but can only communicate in a small number...

متن کامل

Hybrid Beamforming for 5G Millimeter-Wave Multi-Cell Networks

Multi-cell wireless systems usually suffer both intracell and inter-cell interference, which can be mitigated via coordinated multipoint (CoMP) techniques. Previous works on multi-cell analysis for the microwave band generally consider fully digital beamforming that requires a complete radio-frequency chain behind each antenna, which is less practical for millimeterwave (mmWave) systems where l...

متن کامل

Millimeter-Wave Communication with Non-Orthogonal Multiple Access for 5G

To further improve the system capacity for 5G, we explore the integration of non-orthogonal multiple access (NOMA) in mmWave communications (mmWave-NOMA) for future 5G systems. Compared with the conventional NOMA, the distinguishing feature of mmWave-NOMA is that, it is usually characterized by transmit/receive beamforming with large antenna arrays. In this paper, we focus on the design challen...

متن کامل

Joint Power Control and Beamforming for Uplink Non-Orthogonal Multiple Access in 5G Millimeter-Wave Communications

In this paper, we investigate the combination of two key enabling technologies for the fifth generation (5G) wireless mobile communication, namely millimeter-wave (mmWave) communications and non-orthogonal multiple access (NOMA). In particular, we consider a typical 2-user uplink mmWaveNOMA system, where the base station (BS) equips an analog beamforming structure with a single RF chain and ser...

متن کامل

Joint Power Allocation and Beamforming for Non-Orthogonal Multiple Access (NOMA) in 5G Millimeter-Wave Communications

In this paper we explore non-orthogonal multiple access (NOMA) in millimeter-wave (mmWave) communications (mmWave-NOMA). In particular, we consider a typical problem, i.e., maximization of the sum rate of a 2-user mmWave-NOMA system. In this problem, we need to find the beamforming vector to steer towards the two users simultaneously subject to an analog beamforming structure, while allocating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Microwave Theory and Techniques

سال: 2021

ISSN: ['1557-9670', '0018-9480']

DOI: https://doi.org/10.1109/tmtt.2020.3039747